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Infinitesimal transformations about solutions of K d v  and 
sine-Gordon equations through a Lie product 

Raju N Aiyer 
Laser Division, Bhabha Atomic Research Centre, Bombay 400 085, India 

Received 17 November 1983 

Abstract. It is shown that the double infinity of infinitesimal transformations about solutions 
of the KdV equations which can be generated by a recursion operator and its inverse can 
also be obtained through a Lie product. Each of the doubly infinite hierarchies of nonlinear 
evolution equations obtained from these infinitesimal transformations is shown to be 
integrable. Similar results hold for the s ineGordon equation. 

1. Introduction 

A necessary condition for the integrability of a nonlinear evolution equation (NLEE) 

U,(& t )  = K ( u )  (1.1) 
is the existence of an infinity of infinitesimal transformations (IT) about any solution 
u(x, t )  of (1.1). One way of establishing this is to find a recursion operator T ( u )  which 
acting on an IT again gives an IT (Wadati 1978, Fuchssteiner and Fokas 1981 and 
references therein, Aiyer 1983). The recursion operator is also called a strong symmetry 
(Fuchssteiner 1979). An infinity of IT for the Benjamin-Ono (BO) equation and the 
Kadomtsev-Petviashvili (KP) equation has been obtained by an entirely novel approach 
(Fokas and Fuchssteiner 1981, Oevel and Fuchssteiner 1982). They have found a 
function .(U) such that if y ( u )  is an IT  about u(x ,  t )  then so is the Lie product [ y ( u ) ,  ~ ( u ) ] .  
u(x,  t )  is a solution of the particular NLEE. y ( u )  and T(U) depend on (x, t )  through 
u(x,  t ) ,  its integrals and partial derivatives with respect to x. The product [ ,] is defined 
by 

M u ) ,  g ( u ) l = ( ~ l a & ) c f ( u  +%)--(U +&f)),=o. (1.2a) 

[ , ]  is anticommutative and satisfies the Jacobi identity (Magri 1976), 

[ I f (u ) ,  g ( u ) ] ,  h ( u ) ]  +cyclic terms = 0. (1.26) 

Since &(U)= u,(x, t )  is usually an IT about a solution u(x ,  t )  of (l.l), K, (u) ,  n E No 
( N o  is the set of all non-negative integers) are IT about u(x ,  t )  where 

Kn(u)= [Kn-du), .(U>]. (1.3) 
This approach is attractive because y ( u )  is an IT about a solution of (1.1) if and only 
if 

[ Y ( U ) l  K(u)l= 0. (1.4) 
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If therefore 

[Kn(u) ,  Km(u)l=O, n, m E No, (1.5) 

holds, then the equation U, = K , ( u )  for all n E No has an infinity of IT. The definition 
(1.3) of K,(u) through a Lie product leads to a direct proof of (1.5) for the BO and KP 

equations. 
It has also been shown (Fokas and Fuchssteiner 1981) that the BO equation does 

not have a recursion operator of the polynomial type as do the Kdv and sine-Gordon 
(SG) equations. The question arises whether the generation of an infinity of I T  by a 
recursion operator on the one hand and by a Lie product on the other are mutually 
exclusive. 

In this paper we obtain the double infinity of IT (Aiyer 1983) for the KdV and SG 
equations through a Lie product. This requires that we obtain a T ( U )  and essentially 
its inverse T ~ ( u )  such that the repeated Lie product of U, and T ( U )  generates one infinity 
of IT and of U, and T ~ ( u )  another. Both for the BO and KP equations a T ~ ( u )  exists but 

[ U ,  70(u)1= 0 (1.6) 

and one cannot obtain the second infinity of IT  using T ~ ( u ) .  We call such a T ~ ( u )  

singular, that is there exists an I T ~ ( U )  such that [ ~ ~ ( u ) , f ( u ) ] = O .  For the KdV and SG 
equations we have obtained a non-singular T;’(u) such that 

[&(U), T ; ’ ( U ) ] =  [U,, ‘$’(U)]= K-l(U) # 0 (1 -7) 

is an IT. Repeated Lie products of T;’(U) and K - , ( u )  generate the second infinity of 
IT Km( U). There also exist a singular T:( U) and a singular and non-singular T(  U), that 
is a T’(u)  and a T ~ ~ ( u )  for these equations. The existence of both types of functions 
is used to prove the main result of the paper that 

[ K , N S ( U ) ,  K f ; f ’ (u ) ]=O for all n, m E Z,, (1.8) 

ut = K-n(u) ,  n E No, ( 1-91 

where 2, is the set of all integers. This implies the new result that 

are integrable, that is have a double infinity of IT. The superscript in (1.8) is to indicate 
that the functions K r S ( u )  are obtained by taking Lie products with T ~ ’ ( u )  for n a 
positive integer and with T:’(u) for n a negative integer. 

In 0 2 we prove the main result (1.8) for the Kdv equation. Considerable preparation 
is needed for the proof. In § 2.1 we write down the expressions for T,”(u) ,  T ~ ’ ( u ) ,  T ~ ( u ) ,  

?(U) and T ~ ’ ( u ) .  T , ( u )  is like the ‘identity’ element for the Lie product. We then 
show that &U) and T ’ ( u )  are singular in the sense explained below (1.6). In 0 2.2 we 
write down the singular and non-singular recursion operators and show that they 
connect T ~ ( U )  to T , ( u )  and T , ( u )  to T ( u ) .  The existence of such an operator for any 
NLEE may imply that it is a recursion operator for the I T  about the solutions of the 
NLEE but we have not been able to prove this. In 8 2.3 some Lie products of the 
various T(U) are written down. The proofs are direct but sometimes long. In 0 2.4 the 
functions KE(u) and K f ; ” ( u )  for all integer n are defined recursively. The proof of 
(1.8) starts in 0 2.5. The important steps in the proof are presented at the beginning. 

In 0 3 we write down the expressions for ~:(4), ~r ’ (4 )  etc for the SG equation. No 
proofs are given. One follows the approach presented for the Kdv equation in § 2. 
The proofs would be simpler for the SG equation because no auxiliary dependent 
function need be introduced as is necessary for the Kdv equation. 
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2. Kdv equation 

1965 

2.1. 

The Kdv equation is 

U, + ~ U U ,  + ~ 3 ,  = 0. 

Define 

T , ( U ) =  XU, +2U. 

$(x, t )  is related to U(X, t )  by 

4x9 t )  = -$xx(x, t ) /  J/(x, t ) .  (2 .3)  

T”’(u)  and T;’(u) differ from ~ ’ ( u )  and T ~ ( u )  only in the appearance of a lower limit 
-CO in the integrals. 

The boundary condition on $(x, t )  as x + -CO, which will be needed later, is now 
obtained. Considering (2.3) as a differential equation in $(x, t )  with potential U(X, t )  
and eigenvalue zero, we get $(x, t ) +  constant as 1x1 3 CO if u(x, t )  + 0 sufficiently rapidly 
as IX[- ,CO. Without loss of generality we will assume that 

*(x, t ) +  1 as x-, -CO. (2.4) 

T’( U) is termed singular because 

[m, $$XI = 0. ( 2 . 5 1 )  

But 

b N S ( U ) ,  $$XI # 0. (2 .5b)  

It is easy to verify that $+hx is an IT. Evaluation of (2 .5a,  b )  is a little involved and 
some details are presented below. 

[ T ~ ’ ( u > ,  ++,I = [ X ( U ~ ~  + 6 u ~ , ) + 4 u X x  + 8 u 2  +2ux J‘ u(xl, o dxr ,  ++,I, (2 .6)  
-53 

.“’(U) and $$x are small changes in u(x, t ) .  However, the second element of the 
product (2 .6)  is in terms of $(x, t ) .  Therefore to evaluate (2 .6)  one has to find the 
variation in $(x, t )  corresponding to a variation T ~ ’ ( u )  in u(x ,  t ) .  It is convenient to 
transform both the elements in (2 .6)  as changes in $(x, t ) .  Thus if U + U + ~ y  and 
correspondingly J, + J, + EZ we have to find z(x, t )  in terms of y(x, t ) .  Substituting the 
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functions U + ~y and $ + EZ for U and $ in (2.3) and comparing terms linear in E we get 

Y = ($x,z/ G2) - (Zxx/ 4)). (2.7) 

z(x, t )  is evaluated with (i) y(x, t )  = ~ " ' ( u )  and (ii) y(x, t )  = $$,. 

for ~ ( x ,  t )  in (2.7) and solved for z(x, t ) .  One gets 
(i) ."'(U) is expressed in terms of $(x, 1 )  using (2.3). This expression is substituted 

T"'($)= z = ~ { $ ~ , - 3 ( ( L , $ , , / J I ) } + 2 $ ~ ~ - 2 $ ~  l x - ( $ x l x , / $ ) d x ~ .  (2.8) 
--m 

It should be stressed that T"'($) is the variation in $(x, t )  corresponding to the variation 
~ " ' ( u )  in u(x, t ) .  It is not ~ " ' ( u )  expressed in terms of $(x, t ) .  

(ii) With y = ++,, 

One can now evaluate (2.6) and after considerable algebra one gets 

[T" ' ($ ) ,a$  1' { ( l / $ 2 ) - $ ' 2 j  dxil=-$'x. (2.10) 
--m 

4, is a variation in $(x, t ) .  The corresponding variation in u(x, t )  is U, and can be 
obtained directly from (2.7), so that 

[TNS(U) ,  $$,I = U,. (2.1 1 a)  

Similar calculation gives 

(2.1 1 b, c) 

(2 .114 

Variations T'($), T:($), T O N ' ( $ )  in $(x, t )  corresponding to variations T'(u), &U), 
T;'(u) in u(x, t )  are given below: 

T O N ' ( $ )  is (2.126) with -a as the lower limit in the integrals. 

2.2. 

(2.12a) 

(2.12 b) 

The singular and non-singular recursion operators are defined by (Aiyer 1983, unpub- 
lished): 

T S ( u ) = ~ 2 / ~ x 2 + 4 u + 2 u ,  l x d x I ,  

TNS(u) = a2/dx2 +4u +2u, dx,. I: 
It is easy to verify that 

(2.13) 

( 2 . 1 4 ~ )  T ' ( U ) {  Tg( U)} = Ts( U){ TO"'( U)} = -TI (U), 
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TS(U){T1(U)) = w, T N S (  U){ TI( U)} = TNS( U). (2.146, c )  

One cannot replace Ts(u)  in (2 .14~)  by TNS(u) as a divergent term J:m 1 - d x l  then 
appears. 

2.3. 

By the method used in evaluating (2.6) or directly one has 

[ T S ( U ) ,  71(u)1= 2TS(U), [ T N S ( U ) ,  T 1 ( U ) ] =  2TNS(U), (2.15a, b) 

[ T s ( U ) ,  7 : ( U ) ] =  [ T s ( U ) ,  T r s ( U ) ] =  -4T1(U). (2 .15~)  

To prove (2.14~) and (2.156) it is assumed that u(x, t )  + 0 faster than x + ---CO in the 
limit x + --CO. 

2.4. 

Define 

KO”S(u) = K&) = U,, (2 .16~)  

K%J)= [KS,-l(U>, . rS (U) l ,  K:’(u)G [ K : S I ( U ) ,  T N S ( U ) ]  (2.16b, e) 

and 

K S l ( u ) =  K ? ~ ( u ) = I & ,  (2.17a) 

K ? ; - , ( U )  = [K?:( U), 7Fs( U)]. (2.17b, e) 

A few words about the choice of K ” ( $ )  and KN:(t,b), the variation in $(x, t) 
corresponding to a variation KSl(u)=  K ? ~ ( u )  in u(x, t). Using (2.7), K - , ( $ )  can have 
three forms: 

KSn-1 ( U > =  [ K s n ( u ) ,  6( toI ,  

(9 -a+ 9’ dxl ,  

(ii) a+ lX {(1/(L2>- $2) dx, ,  

(iii) 

For all these KI(+), 

[ K - , ( + ) ,  7s(9cl)l= 0, [K-I(9), 7NS(9)I = 9,. (2.18~1, b) 

To obtain K?:(u) and K ? , ( u )  from (2.17b, c), K”($)  and K S n ( $ )  have to be evaluated 
first. This requires that K?s(+)  and KSI(+) be first defined and here we have a choice. 
We choose 

KSI<+>=++ I’ {(1192)-+21dxl, (2.19a) 

r x  

(2.19b) 
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This choice of K ?  ,( +) simplifies 
K"(+) is made on the basis that 

to some extent the proof of (1.8). The choice of 

where KO(+) = 9, is the variation in +(x, t )  corresponding to a variation Ko(u)  = U, in 
u(x, t ) .  Thus we connect K:'(+) for positive and negative n. 

2.5. 

The main steps in the proof are to show the following. 
(a) [ K S J U ) ,  U,] = 0, for all n E N ~ .  
(b) [K!?:(u),  U,] = 0, n E No, using (a). This is the longest part of the proof. 
(c) [K!?:(u),  K f l ' i ( u ) ]  = 0, m, n E No, by taking Lie products of (b) with T;'(U). 
( 4  [ K h ,  ++,I= 0, n E No. 
(e) K : ( u )  = K r S ( u ) ,  n E No. 
(f) [Kr;"(u),  KEs(u) ]  = 0, m, n E No, using (d), (e) and taking Lie products with 

(g) [Kr;"(u), K ? i ( u ) ]  = 0, n, m E No, using (2.15~) and by taking the Lie product 
TNS( U). 

of [Kr;"(u),  K ? ~ ( u ) ]  with 7 Y s ( u ) .  
Combining (c), (f) and (g) completes the proof of (1.8). 

Proof of ( a ) .  Assume that 

[Ksn+l (u ) ,  u x I = O  for some n 3 2. 

Taking the Lie product with T:(u)  and using the Jacobi identity (1.2b) we have 

0 = [ [KS-n+l(u) ,  7:(~)1 = -[[d(~), ~ S n + l ( u ) I ,  ~ x l - [ [ ~ x ,  6 ( ~ ) I 9  ~ S - n + l ( u ) I *  

Using (2.11~)  and (2.17b) one has 

[ K ? , ( u ) ,  U,] = 0. (2.21) 

That [ K - , ( u ) ,  U,] = 0 can be easily verified and (2.21) follows by induction. 

Proof of (b). It  is first shown that K ! , - , ( + )  can be written as an operator acting on 
K?,(+) for n 3 1 where, K?,,(+) is the variation in +(x, t )  due to a variation K?, (u )  
in u(x, t ) .  From (2.12b) and (2.17b) it follows that 

K S n - l ( + )  = [ K S n ( + ) ,  7:(+)I 

(2.22) 

It will be shown that 

(2.23) 

where C-,, = C- ,+ ,  +4 and 
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Expanding the Lie product (2.22) and using (2.23) one has to show that 

@/a&> {P,(+ + & m 4 ) 1 , = 0 + 2  I' (z"_/+2) dx, I' +2 dX2 

+ 2  J' +'z?, dx, J' (I/+,) dx, 

= (C-n +4){ I' d ~ , ( l / + ~ )  I" + 2  Z?,  dx, + IX dx, +' jx' ( Z ? , / + 2 )  dx,}. 

(2.25) 

The proof is by induction. Assume (2.23) holds for n = n + 1 that is 

+ZSn(+L) = Ks-,(+) 

= [KS-,+l (+), .%+)I 

=k,+,+{ 1' dxl(l /+2) I" cC12z?n+l dx2 

Then (2.25) is true with n = n - 1, that is, 

(2.26) 

(2.27) 

Use (2.26) to write Z?, (+)  in terms of Z?n+l(+) in (2.25). Eliminate 
(a/a~){Z! , ,+~(+   ET^(+))},=^ using (2.27) and assume that (a/&)( ) I E S O  and the 
integral I' dx,  commute. After some algebra one proves (2.25). The inductive proof 
is completed by showing that 

+Z52(+) = KS2(+) 

= [K:I(+>? 7%+)1 

= ~ + { ~ x d x l ( * / + 2 ) ~ x ' + 2 Z ? l  d x 2 + j x d x l  +2 \x ' (Z? l /+2)dx2} ,  (2.28) 

where 

+Z? , (+)=  K:I(+)=i+ {(1/+2)-+21 dx1 I' 
from (2.19a). C-, = 2 and C, is determined. The proof of (2.28) is direct but long. 
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It can similarly be shown that 

IJ-0. J -m 

(2.29) 

where 
$ZN,S( 4) = K "( $). 

We are now ready to show that 

[K", CLXI = 0 for all n e  No. (2.30) 

From (2.23), (2.29) and the expressions (2.19) for K!, ($)  and K"($) it is seen that 
K!,($) and K"($) have the same terms except that the lower limit --CO occurs in the 
integrals in K"($). Therefore [Kr":(+), 
(except that the integrals will have a Iower limit --CO) together with any terms arising 
from the contribution of the lower limit. Such a contribution will come only from the 
last integral, that is, in evaluating the change in Jrm {( 1/G2) - $'} dx,  when $ + $ +E$, .  
This contribution is -2 1 {$$x +(+x/$3)} dx,  evaluated at --CO. With the boundary 
condition (2.4) this value is zero. This proves (2.30). 

Reverting to variations in u(x, r), (2.30) gives 

will have all the terms of [ K ! , ( $ ) ,  

[KN,S(U), u x ] = 0  for all n E No. (2.31) 

This proves (b). 

Proof of (c). Assume that 

[K"(u),  KN:(u)]=O (2.32) 

for all n 3 1 and for some positive integer m. Taking the Lie product with . r rs (u) ,  
using the Jacobi identity (1.2b), (2 .17~)  and (2.32) it follows that 

[K"(u) ,  K"- , (u ) ]=O,  fla 1:  (2.33) 

The inductive proof is complete using (2.20) and (2.31). 

Proof of (d). The proof is identical to that of (a). Start with 

[ K L ( u ) ,  +$XI = 0 for some n 3 2. (2.34) 

Take the Lie product with ~ ' ( u ) ,  use the Jacobi identity (1.2b), (2.1 1 b) and (2.166) to 
prove 

[Ks , (u) ,  $$XI = 0. (2.35) 

Proof of (e). Following the method used to prove (2.23) it can be shown that 

K ; ( U )  = [K;-,(U>, T'(u>I= CnTs(u){KS,-l(u)J 

and 

K :'( U) = [ K  E;'_",( U), TNs( U)] = C,TNS( U){ K:?,( U)}, (2.36) 

where Ts( U) and TNS( U )  are given by (2.13) and C,  = C,- , + 2, CO = 2. 
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It has been proved (Aiyer 1983, unpublished) that if for some n E No 

K : ( u ) =  K r S ( u ) = K , ( u )  

then 

~ S , + l ( u )  = C n + l  T s ( u ) { K n ( u ) )  

= cn+, T N S ( u ) { K n ( u ) }  = K;:l(u). 

This proves (e) if one uses (2 .16~) .  

(2.37) 

Proof of 0. This is simply obtained by taking repeated Lie product of ~ " ' ( u )  with 
(2.35) and using (2.37). This result has been proved earlier by a different method 
(Fuchssteiner 1979). 

where a,+, = an -4(2n + 1) and a,= 1. 
With these results proof of (g) is simple. 
Let 

[ K n ( u ) ,  ~ ? 2 ( u ) I  = 0 

(2.41) 

(2.42) 

for all n E No and for some positive integer m ;  then 

0 = [ [Kdu) ,  K 2 4 4 1 ,  7ONS(u)I 

= - [ [ ~ o " ~ ( u ) ,  ~ n ( u ) I ,  K"(~) I  - [[K;;(U),  7ts(u)I, K ~ ( u ) I .  

The first term on the right is zero, as follows from (2.41), (2.42) and (c). Therefore 
using the definition (2.17c), 

[ Kn ( U), K y 2  - i (U)] = 0 for all n E No. (2.43) 

The proof is completed by noting that (d) holds, that is (2.42) is true with m = 1. 



1972 R N Aiyer 

Combining (c), (f) and (g) we have 

[K:S(u), K!~U)I = 0, 

for all n, m E Z,. The superscripts are retained as Kys(u) # K:(u) for negative n. 

3. Sine-Gordon equation 

For the SG equation 

4, = I’ sin 44x1, t )  dx,,  

744) = 443, +f43,)+24,, +b#Jx I’ 
-m 

dx, .  

~ ~ ‘ ( 4 )  is the same as ~ ’ ( 4 )  with a lower limit --CO in the integral. 

~ z ( 4 )  = lX dxl exp(-i4(xl, 1 ) )  exp(i4(x2, t ) )  dx,-complex conjugate. I ’ I  
~ 2 ’ ( 4 )  is ~ z ( 4 )  with --CO as the lower limit in the integrals. 

The singular and non-singular recursion operators are 

and TNS(+) is T s ( + )  with --CO as the lower limit. 

4. Conclusion 

We have shown that the double infinity of I T  about any solution of the Kdv equation 
which can be generated by a recursion operator and its inverse can also be generated 
by a Lie product. Using this method we are able to show that each of the hierarchy 
of NLEE U, = &(U), where K,(u) is obtained by taking repeated Lie products of U, 
and T”’( U) or U, and TON’( U), has a double infinity of IT. The existence of a recursion 
operator for IT for any one of this hierarchy of equations is not sufficient to ensure 
that every member of the hierarchy has an infinity of IT. 

The proof depends on two factors; (1) there exist singular and non-singular .(U) 
and T,(u), that is T’(u), T~’(u), .”,U) and T:’(U);  (2) the Lie product [&(U), ~’(u)] 
etc can be written as an operator acting on Kn(u). Also the recursion operators connect 
T,(u) to T,(u) and T,(u) to T ( u ) .  

We have proved (1.8) by a method different from that used by Fokas and 
Fuchssteiner (1981). This makes the proof a little long. The reason for adopting a 
different method mainly arises from the fact that we cannot use the idea of ‘order of 
a function’ for K - , ( u )  as these functions are not polynomials in u(x ,  t )  and its partial 
derivatives. 
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